

Canomadine Creek Bridge

Geotechnical Investigation

Job No.: B21781

Submitted To:

Cabonne Council

PO Box 17

Molong NSW 2866

Attn: Wilson Wang

Report No.: B21781

Cabonne Council – Canomadine Creek Bridge

REVISION CONTROL

Revision	Date	Details	Prepared By	Reviewed By
00	28/04/2023	Draft	S. Greene	D. Clarkson

Contents

1	INT	RODL	DUCTION					
2	SCC	OPE O	OF INVESTIGATION					
	2.1	Site	e Description					
	2.2	Des	k Study	6				
	2.3	Reg	ional Geology	7				
	2.3	.1	Groundwater Bores	7				
	2.3	.2	Acid Sulphate Maps	8				
	2.3	.3	Topography	8				
	2.4	Field	dwork	8				
	2.4	.1	Service Location	8				
	2.4	.2	Survey	9				
	2.4	.3	Boreholes	9				
	2.5	Sam	npling	10				
	2.6	In-S	itu Testing	10				
	2.6	.1	Standard Penetration Testing	10				
	2.7	Labo	oratory Testing	10				
3	EXI	STING	SUBSURFACE CONDITIONS	11				
	3.1	Expl	loratory Hole Summary	11				
	3.2	Gro	undwater	11				
4	LAE	BORAT	TORY TEST RESULTS	12				
5	GEO	OTECH	HNICAL ASSESSMENT	13				
	5.1	Site	Classification	13				
	5.2	Fou	ndations	13				
	5.2	.1	Geotechnical Design Parameters	13				
	5.3	Geo	technical Strength Reduction Factor (AS2159)	15				
	5.3	.1	Foundation Settlements	15				
	5.3	.2	Shallow Foundations	15				
	5.3	.3	Deep Foundations	16				
	5.4	Exca	avation and Stability	16				
	5.5	Agg	ressive Soils	16				
6	CO	NCLUSION						

Figures

Figure 1: Site Location	6
Figure 2: NSW Seamless Geological Map Sheet Extract	7
Figure 3: Acid Sulphate Risk Map	8
Figure 4: Borehole Location Plan	9

Tables

Table 1: Borehole Scope	5
Table 2: Summary of Geology	7
Table 3: Summary of Laboratory Tests	
Table 4: Summary of Boreholes (BH01 and BH02)	11
Table 5: Laboratory Test Results – Classification	12
Table 6: Laboratory Test Results – Soil Chemical Properties	12
Table 7: Laboratory Test Results – Uniaxial Compressive Strength (MPa)	12
Table 8: Estimated Geotechnical Engineering Parameters	13
Table 9: Bearing Pressure	14
Table 10: Pile Design Parameters	14

Appendices

Appendix A – General Notes Appendix B – Site Plan Appendix C – Exploratory Hole Logs Appendix D – Laboratory Test Results

1 INTRODUCTION

At the request of Cabonne Council, Macquarie Geotechnical (MG) has carried out a Geotechnical Investigation for the proposed upgrade of Canomadine Creek Bridge on Canomadine Lane, Canowindra NSW.

The objective of the investigation is to provide a Geotechnical Investigation Report.

The comments and opinions expressed in this report are based on the ground conditions encountered during the site work including the results of tests carried out in the field and in the laboratory. However, there may be special conditions prevailing on the site which have not been disclosed by this investigation and which have not been taken into account by this report.

2 SCOPE OF INVESTIGATION

Undertake a desk study of the site to confirm the likely geological conditions of the site and to develop a geological model for the site.

Undertake Dial Before You Dig (DBYD) Search.

Mobilisation of one drill rig. Drilling, logging and sampling of two boreholes as per Table 1 below with rock coring at each borehole. In-situ testing comprised of Standard Penetration Testing (SPT) at 1.50m intervals in each borehole and Pocket Penetrometer (PP) tests on SPT split spoon samples.

Hole ID	Eastings	Northings	Elevation RL (m)	Depth (m)
BH01	666461.0	6290944.9	355.0	13.34
BH02	666459.9	6290957.0	355.0	12.32

Table 1: Borehole Scope

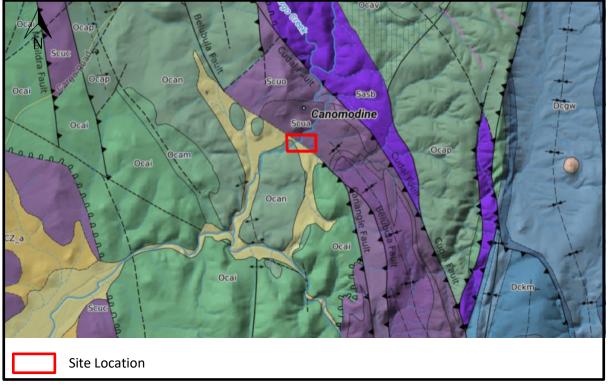
Samples were taken at selected intervals and at every change of strata to allow for laboratory testing at our NATA accredited laboratory in Sydney, NSW. Testing comprised of the following:

- 4No. Atterberg Limits & Linear Shrinkage Tests
- 2No. Soil Chemical Properties
- UCS Rock

2.1 Site Description

The site is located on Canomadine Lane at the bridge over Canomadine Creek, approximately 10.2km southwest of Cargo, NSW and 10.7km northeast of Canowindra, NSW.

Figure 1: Site Location


2.2 Desk Study

A desk study was undertaken using readily available geological and geotechnical information and included the following:

- NSW Seamless Geology Map
- NSW Department of Primary Industries Groundwater Bore Data.
- NSW Government SEED
- Google Earth

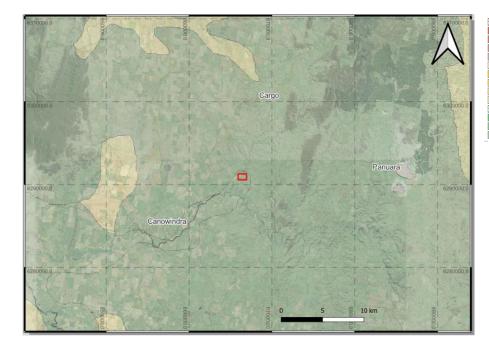
2.3 Regional Geology

The Geological map sheet extract is shown in Figure 2 below:

Figure 2: NSW Seamless Geological Map Sheet Extract

With reference to the NSW Seamless Geological map sheet extract, the site is underlain by the following:

Table 2: Summary of Geology


Geological Symbol	Group	Lithology
Q_af	Alluvial floodplain deposits	Silt, very fine to medium grained lithic to quartz rich sand, clay.
Scua	Avoca Valley Shale	Green and red-brown shale, coarse grained garnetiferous sandstone.
Ocan	Canomodine Limestone	Thick-bedded to massive, wackerstone, limey mudstone, minor shale and tuff.

2.3.1 Groundwater Bores

There were no records of groundwater bores located within close proximity to the site.

2.3.2 Acid Sulphate Maps

Reference is made to the NSW Government Central Resource for Sharing and Enabling Environmental Data in NSW (SEED) of Australian Acid Sulphate Soils and presented in Figure 3 below:

A High Probability/Confidence Unknown
A1 High Probability/High Confidence
A2 High Probability/High Confidence
A3 High Probability/Low Confidence
A4 High Probability/Cow Confidence
B Low Probability/Comfidence Unknown
B1 Low Probability/Comfidence
B2 Low Probability/Cow Confidence
B4 Low Probability/Low Confidence
B4 Low Probability/Low Confidence
C. Extremely Low Probability/Confidence Unknown
C2 Extremely Low Probability/Confidence
C3 Extremely Low Probability/Low Confidence
C4 Extremely Low Probability/Low Confidence

Figure 3: Acid Sulphate Risk Map

The acid sulphate map indicates an extremely low probability of acid sulphate soils within the site.

2.3.3 Topography

The topography of the site is moderately dipping to the north, approximately perpendicular to Mitchell Creek, from 353m to 367m above sea level. Canadomine Creek is a meandering tributary which flows into Belubula River to the south-west.

2.4 Fieldwork

Fieldwork was undertaken on the 3rd April to 5th April 2023 by a team of Drillers and Engineering Geologist from our Bathurst and Sydney offices. The fieldwork was undertaken in accordance with our proposal and AS1726 (2017) Geotechnical Site Investigation.

2.4.1 Service Location

Macquarie Geotechnical obtained underground services and utility plans through 'Before You Dig (BYD)' services.

2.4.2 Survey

The test locations were surveyed using a handheld GPS with co-ordinates recorded in MGA Zone 55 format.

2.4.3 Boreholes

The boreholes were drilled at locations nominated by Macquarie Geotechnical and are summarised in Figure 4.

Figure 4: Borehole Location Plan

A track mounted Hanjin D&B 8D rig was used to drill two (2) boreholes to depths of up to 13.34m. Drilling comprised of 115mm diameter solid flight auger and HQ3 coring. In-situ testing comprised of Standard Penetration Testing (SPT) at 1.50m intervals in each borehole and Pocket Penetrometer (PP) tests on SPT split spoon samples.

The boreholes were backfilled with arising's and reinstated on completion.

The borehole logs and photographs are presented in Appendix C.

2.5 Sampling

The sampling was undertaken in accordance with AS1289 1.2.1 and based on that defined in the proposal and considered the engineering requirements of the investigation and the nature of the materials encountered.

2.6 In-Situ Testing

In-situ testing as specified by our proposal was carried out in the exploratory holes in accordance with the techniques outlined in the relevant Australian Standards and Macquarie Geotechnical Quality procedures. The results are presented on the relevant exploratory hole logs in Appendix C.

2.6.1 Standard Penetration Testing

Standard Penetration Tests (SPT) were carried out in the boreholes with techniques outlined in AS1289 6.3.1 in order to determine the relative density and consistency of the strata encountered. The SPT "N" value (number of blows per 300mm penetration) or the blow count/penetration were recorded for each test.

2.7 Laboratory Testing

The samples were returned to Macquarie Geotechnical NATA accredited laboratory at Sydney for further assessment and testing. A summary of the laboratory tests is provided in Table 3 below.

Hole ID	Depth (m)	Laboratory Test		
	1.00 - 1.50	AS1289 3.1.1 & 3.4.1 – Atterberg Limits and Linear Shrinkage		
	2.50 - 3.00	AS1289 3.1.1 & 3.4.1 – Atterberg Limits and Linear Shrinkage		
BH01	2.30 - 3.00	APHA pH, SO4, Cl & EC		
	8.67 – 8.87	UCS		
	0.50 - 1.50	AS1289 3.1.1 & 3.4.1 – Atterberg Limits and Linear Shrinkage		
BH02	2.00 2.50	AS1289 3.1.1 & 3.4.1 – Atterberg Limits and Linear Shrinkage		
впог	2.00 – 3.50	APHA pH, SO4, Cl & EC		
	11.24 - 11.44	UCS		

Table	3:	Summary	of	Laboratory	Tests
-------	----	---------	----	------------	-------

3 EXISTING SUBSURFACE CONDITIONS

The subsurface conditions encountered in the boreholes are presented in detail in the attached borehole logs (refer Appendix C). The subsurface conditions encountered in all boreholes are broadly summarised in Table 4 below.

3.1 Exploratory Hole Summary

Table 4: Summary of Boreholes (BH01 and BH02)

-	BH01	BH02
Material Description	Dept	h (m)
TOPSOIL	-	0.00 - 0.10
Gravelly SAND (FILL)	0.00 - 1.95	-
Sandy silty CLAY (ALLUVIAL)	1.95 – 6.50	0.10 - 1.00
Silty CLAY (ALLUVIAL)	-	1.00 - 3.00
Gravelly CLAY (RESIDUAL)	6.50 - 7.20	3.00 - 3.27
MUDSTONE (XW)	7.20 – 7.90	-
MUDSTONE (HW-MW)	-	3.27 - 8.27
MUDSTONE (MW)	7.90 - 8.45	-
MUDSTONE (SW)	8.45 - 13.34	8.27 – 12.32
Total Depth (m)	13.34 (LOI)	12.32 (LOI)
Groundwater Observation (m)	2.70	NFGWO

Note: Please refer to borehole logs in Appendix C for detailed descriptions. MW – Moderately Weathered, SW – Slightly Weathered, F – Fresh. LOI – Limit of Investigation. NFGWO – No Free Groundwater Observed.

3.2 Groundwater

The comments on groundwater are based on the observations made at the time of the investigation. Groundwater was observed as a slow inflow at a depth of 2.70m within borehole BH01 during soil drilling. No observations of groundwater during BH02 works, this may have been masked by the use of rotary core drilling.

Seasonal variation in groundwater may be encountered and shall be considered as part of design process.

4 LABORATORY TEST RESULTS

The laboratory tests were carried out on the samples nominated by Macquarie Geotechnical. The summary of test results is shown in Tables 5 to 7 below.

Hole	Denth	Depth Sample Description Atterberg Limits				Linear
ID	(m)	(USCS)	LL (%)	PL (%)	PI (%)	Shrinkage (%)
BH01	1.00 - 1.50	Clayey SAND*	25	17	8	4.0
BH01	2.50 - 3.00	Clayey SAND*	28	18	10	6.5
BH02	0.50 - 1.50	Silty CLAY*	32	19	13	9.5
BH02	2.00 - 2.50	Silty CLAY*	42	19	23	11.0

Table 5: Laboratory Test Results – Classification

Note: * Visual description, USCS – Unified Soil Classification System.

Table 6: Laboratory Test Results – Soil Chemical Properties

			So	oil Chemica	l Propertie	s (SCP)
Hole ID	Depth (m)	Sample Description*	рН	SO₄ (ppm)	Cl (ppm)	Electrical Conductivity (µS/cm)
BH01	2.50 - 3.00	Sandy silty CLAY*	7.9	20	<10	80
BH02	2.00 - 2.50	Silty CLAY*	8.0	<10	<10	74

Note: * Visual description; SO₄ – Sulphate, Cl – Chloride.

Table 7: Laboratory Test Results – Uniaxial Compressive Strength (MPa)

Hole ID	Depth (m)	Uniaxial Compressive Strength (MPa)
BH01	8.67 - 8.87	23.0
BH02	11.24 - 11.44	6.5

5 GEOTECHNICAL ASSESSMENT

5.1 Site Classification

The classification of a site involves a number of geotechnical factors such as depth of bedrock, the nature and extent of subsurface soils and any specific problems (slope stability, soft soils, filling, reactivity, etc).

In accordance with AS2870 2011 the proposed development site is classified as "Class M" and will have an anticipated surface movement (Ys) of 25 - 35 mm.

An appropriate footing system should be designed in accordance with the above code to accommodate these anticipated movements. The possibility of additional movements, due to abnormal moisture variations, should be minimised by proper "site management" procedures.

It should be noted that this assessment is based on site conditions being represented by the natural soil profile. Any change in conditions noted during development, including cut or fill should be referred to Macquarie Geotechnical for appropriate inspection and assessment.

The above classifications, based on AS2870 which relates to construction of residential dwellings, is not technically correct for the type of structures proposed and therefore it is given as a guide only with respect to soil reactivity.

5.2 Foundations

The investigation indicates that the ground conditions generally comprised of sequences of alluvial soil overlying weathered calcareous mudstone.

5.2.1 Geotechnical Design Parameters

Based on our investigation, and our experience in this region, we recommend the following geotechnical design parameters.

Depth (m)	Soil Description	Unit Angle of Friction (degrees)		Cohesion (KPa)		Concrete to Soil Friction	
		Weight (KN/m3)	Drained Φ'	Undrained Ф	Drained c'	Undrained Cu	Angle δ (degrees)
Varying Depth	Clayey gravelly SAND (FILL)*	18	30	30	0	-	23
	Sandy silty CLAY – Soft to Firm	17	17	0	0	12	13
	Gravelly CLAY – Hard	20	32	32	0	200	25

Table 8: Estimated Geotechnical Engineering Parameters

Table 9: Bearing Pressure

Depth (m)	Soil Description	Allowable Bearing Pressure (KPa)	Ultimate Bearing Pressure (KPa)	Modulus of Subgrade Reaction (MN/m3)
Varying Depth	Clayey gravelly SAND (FILL)*	-	-	4
	Sandy silty CLAY – Soft to Firm	20	60	2
	Gravelly CLAY – Hard	340	1020	40

Table 10: Pile Design Parameters

Depth	Soil Description	Ultimate End Bearing	Serviceability End Bearing	Ultimate Shaft	Modulus of Subgrade Reaction (MN/m ³)	
(m)		Pressure (KPa)	Pressure (KPa)	Adhesion (KPa)	Vertical	Horizontal
Varying Depth	Clayey gravelly SAND (FILL)*	-	-	-	4	8
	Sandy silty CLAY – Soft to Firm	-	-	4	2	4
	Gravelly CLAY – Hard	1800	600	60	70	140
	Mudstone (EW)	3000	700	75	120	240
	Mudstone (HW)	3000	1000	150	120	240
	Mudstone (MW)	9000	3000	350	240	480
	Mudstone (SW)	30000	6000	600	1200	2400

Note: EW – Extremely Weathered, HW – Highly Weathered, MW – Moderately Weathered, SW – Slightly Weathered.

* No skin friction support should be derived from the existing fill material.

Preliminary design parameters to be confirmed by a detailed design analysis.

Pile design parameters based on bored piles.

A bearing capacity factor Nc equal to 9 for clay can be used provided that the pile has been embedded at least to a depth of five diameters into the bearing stratum.

Socket roughness of R2 or better.

For strong rock, the pile carrying capacity should not be greater than the safe load on the material of the pile at the point of minimum cross section.

For foundations bearing on soil or rock, weaker soil or rock layers present below the base of the foundation within the zone of influence of the foundation should be taken into account in the design of the foundation.

5.3 Geotechnical Strength Reduction Factor (AS2159)

The geotechnical strength reduction factor for pile design is defined in the Piling Code. Selection of the geotechnical strength reduction factor (φ_g) is based on a series of individual risk ratings (IRR) which are weighted and lead to an average risk rating (ARR). The individual risk ratings and final value of (φ_g) depend on the following factors:

- Site: the type, quantity and quality of testing.
- Design: design methods and parameter selection.
- Installation: construction control and monitoring.
- Pile testing regime.
- Redundancy.

Without clear details about the pile type, design method, testing regime and other construction factors it is not possible to calculate the appropriate (ϕ_g) value. Assuming no pile testing, limited specialist geotechnical supervision during construction, and the limited/basic investigation and testing, an ϕ_g value of 0.48 is considered appropriate.

Nevertheless, with geotechnical supervision and pile integrity testing ϕ_g value can be increase to 0.52.

5.3.1 Foundation Settlements

For shallow foundations bearing on the alluvial or residual soils the total and differential settlements are expected to be within 25mm provided that the allowable bearing capacities are not exceeded. For deep foundations bearing on the underlying bedrock the total and differential settlements are expected to be within 25mm provided that the allowable bearing capacities are not exceeded.

5.3.2 Shallow Foundations

If it is proposed to use shallow foundations on fill material, then the existing ground should be excavated to remove any soft, organic or moisture affected materials. The exposed subgrade should then be compacted to a minimum dry density ratio of 98% relative to standard compaction at a moisture ratio of 60 - 90% of the optimum moisture content. The prepared subgrade shall then be proof rolled to identify any soft spots to remedy it. Fill material can then be placed and compacted to 98% relative to standard compaction at a moisture ratio of 60 - 90% of the optimum ratio of 60 - 90% of the optimum moisture content. The prepared subgrade shall then be proof rolled to identify any soft spots to remedy it. Fill material can then be placed and compacted to 98% relative to standard compaction at a moisture ratio of 60 - 90% of the optimum moisture content in maximum 250mm loose thickness layers up to design level. An allowable bearing capacity of 150kPa can be assumed for the compacted fill material.

5.3.3 Deep Foundations

Piles should be bored to found in the underlying mudstone. It is likely that a rock auger or coring bucket will be required for piles that are designed to be socketed into the underlying bedrock. Provision should be made for temporary casing of bored piles below groundwater level.

5.4 Excavation and Stability

Excavation of the alluvial and residual soils is expected to be straightforward using traditional excavation equipment. For temporary work conditions above groundwater level, benching in the cohesive soils or slope angles of 1V:1H in the non-cohesive soils is considered appropriate for the materials. For temporary work conditions below groundwater level excavation support will be required. For permanent conditions slope angles of 1V:2H is considered appropriate, subject to a slope stability assessment.

5.5 Aggressive Soils

We refer to Table 6.4.2 (c) Exposure Classification for Concrete Piles AS2159 – 2009 'Piling – Design and Installation'.

The soil condition is classified as 'Condition – A' and 'Condition – B'. The test results indicate very low levels of Sulphates (<10 - 20 ppm), Chlorides (<10 ppm) and a pH (7.9 - 8.0). Therefore, the soils at this site are classified as Mild due to the presence of groundwater.

6 CONCLUSION

The findings of our report were based on our fieldwork, in-situ testing, laboratory testing and technical assessment for this site.

We trust the foregoing is sufficient for your present purposes, and if you have any questions please contact the undersigned.

Sam Greene Engineering Geologist BSc (Hons)

D Clark

David Clarkson Senior Geotechnical Engineer BEng MSc MIEAust

John Boyle Geotechnical Manager BSc (Hons) ME (Geotechnical) Affil MIEAust

Attached:Limitations of Geotechnical Site Investigation.References:Australian Standard 1726 – 2017 Geotechnical Site Investigations

M:\2021\B21781 - Cabonne Council - Canomadine Creek Bridge\8. Reporting\B21781 - Cabonne Council - Canomadine Creek Bridge - Draft GI Report

LIMITATIONS OF GEOTECHNICAL SITE INVESTIGATION

Scope of Services

This report has been prepared for the Client in accordance with the Services Engagement Form (SEF), between the Client and Macquarie Geotechnical.

Reliance on Data

Macquarie Geotechnical has relied upon data and other information provided by the Client and other individuals. Macquarie Geotechnical has not verified the accuracy or completeness of the data, except as otherwise stated in the report. Recommendations in the report are based on the data.

Macquarie Geotechnical will not be liable in relation to incorrect recommendations should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed.

Geotechnical Investigation

Findings of Geotechnical Investigations are based extensively on judgment and experience. Geotechnical reports are prepared to meet the specific needs of individual clients. This report was prepared expressly for the Client and expressly for the Clients purposes.

This report is based on a subsurface investigation, which was designed for project-specific factors. Unless further geotechnical advice is obtained this report cannot be applied to an adjacent site nor can it be used when the nature of any proposed development is changed.

Limitations of Site investigation

As a result of the limited number of sub-surface excavations or boreholes there is the possibility that variations may occur between test locations. The investigation undertaken is an estimate of the general profile of the subsurface conditions. The data derived from the investigation and laboratory testing are extrapolated across the site to form a geological model. This geological model infers the subsurface conditions and their likely behavior with regard to the proposed development.

The actual conditions at the site might differ from those inferred to exist.

No subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.

Time Dependence

This report is based on conditions, which existed at the time of subsurface exploration. Construction operations at or adjacent to the site, and natural events such as floods, or groundwater fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report.

Macquarie Geotechnical should be kept appraised of any such events, and should be consulted for further geotechnical advice if any changes are noted.

Avoid Misinterpretation

A geotechnical engineer or engineering geologist should be retained to work with other design professionals explaining relevant geotechnical findings and in reviewing the adequacy of their plans and specifications relative to geotechnical issues.

No part of this report should be separated from the Final Report.

M:\2021\B21781 - Cabonne Council - Canomadine Creek Bridge\8. Reporting\B21781 - Cabonne Council - Canomadine Creek Bridge - Draft GI Report

Sub-surface Logs

Sub-surface logs are developed by geoscientific professionals based upon their interpretation of field logs and laboratory evaluation of field samples. These logs should not under any circumstances be redrawn for inclusion in any drawings.

Geotechnical Involvement During Construction

During construction, excavation frequently exposes subsurface conditions. Geotechnical consultants should be retained through the construction stage, to identify variations if they are exposed.

Report for Benefit of Client

The report has been prepared for the benefit of the Client and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendations and should make their own enquiries and obtain independent advice in relation to such matters

Macquarie Geotechnical assumes no responsibility and will not be liable to any other person or organisations for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisations arising from matters dealt with or conclusions expressed in the report.

Other limitations

Macquarie Geotechnical will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

Other Information

For further information reference should be made to "Guidelines for the Provision of Geotechnical Information in Construction Contracts" published by the Institution of Engineers Australia, 1987.

Geotechnical Explanatory Notes

Soil Description

In engineering terms soil includes every type of uncemented or partially cemented inorganic material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from the Unified Soil Classification system and a soil symbol is used to define a soil layer as follows:

UNIFIED SOIL CLASSIFICATION

The appropriate symbols are selected on the result of visual examination, field tests and available laboratory tests, such as, sieve analysis, liquid limit and plasticity index.

USC Symbol	Description
GW	Well graded gravel
GP	Poorly graded gravel
GM	Silty gravel
GC	Clayey gravel
SW	Well graded sand
SP	Poorly graded sand
SM	Silty sand
SC	Clayey sand
ML	Silt of low plasticity
CL	Clay of low plasticity
OL	Organic soil of low plasticity
MH	Silt of high plasticity
СН	Clay of high plasticity
ОН	Organic soil of high plasticity
Pt	Peaty Soil

MOISTURE CONDITION

- Dry Cohesive soils are friable or powdery Cohesionless soil grains are free-running
- Moist Soil feels cool, darkened in colour Cohesive soils can be moulded Cohesionless soil grains tend to adhere
- Wet Cohesive soils usually weakened Free water forms on hands when handling

For cohesive soils the following codes may also be used:

MC>PL	Moisture Content greater than the Plastic
	Limit.
MC~PL	Moisture Content near the Plastic Limit.
MC <pl< td=""><td>Moisture Content less than the Plastic</td></pl<>	Moisture Content less than the Plastic
	Limit.

PLASTICITY

The potential for soil to undergo change in volume with moisture change is assessed from its degree of plasticity. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows:

Description of Plasticity	LL (%)
Low	<35
Medium	35 to 50
High	>50

COHESIVE SOILS – CONSISTENCY

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by the pocket penetrometer values and by resistance to deformation to hand moulding.

A Pocket Penetrometer may be used in the field or the laboratory to provide approximate assessment of unconfined compressive strength of cohesive soils. The values are recorded in kPa, as follows:

Strength	Symbol	Pocket Penetrometer Reading (kPa)
Very	VS	< 25
Soft		
Soft	S	20 to 50
Firm	F	50 to 100
Stiff	St	100 to 200
Very	VSt	200 to 400
Stiff		
Hard	Н	> 400

COHESIONLESS SOILS - RELATIVE DENSITY

Relative density terms such as very loose, loose, medium, dense and very dense are used to describe silty and sandy material, and these are usually based on resistance to drilling penetration or the Standard Penetration Test (SPT) 'N' values. Other condition terms, such as friable, powdery or crumbly may also be used.

The Standard Penetration Test (SPT) is carried out in accordance with AS 1289, 6.3.1. For completed tests the number of blows required to drive the split spoon sampler 300 mm are recorded as the N value. For incomplete tests the number of blows and the penetration beyond the seating depth of 150 mm are recorded. If the 150 mm seating penetration is not achieved the number of blows to achieve the measured penetration is recorded. SPT correlations may be subject to corrections for overburden pressure and equipment type.

Term	Symbol	Density Index	N Value (blows/0.3 m)
Very Loose	VL	0 to 15	0 to 4
Loose	L	15 to 35	4 to 10
Medium Dense	MD	35 to 65	10 to 30
Dense	D	65 to 85	30 to 50
Very Dense	VD	>85	>50

COHESIONLESS SOILS PARTICLE SIZE DESCRIPTIVE TERMS

Name	Subdivision	Size
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	19 mm to 63 mm
	medium	6.7 mm to 19 mm
	fine	2.36 mm to 6.7 mm
Sand	coarse	600 µm to 2.36 mm
	medium	210 μm to 600 μm
	fine	75 μm to 210 μm

Rock Description

The rock is described with strength and weathering symbols as shown below. Other features such as bedding and dip angle are given.

ROCK QUALITY

The fracture spacing is shown where applicable and the Rock Quality Designation (RQD) or Total Core Recovery (TCR) is given where:

RQD (%) = Sum of Axial lengths of core > 100mm long total length considered

TCR (%) = length of core recovered length of core run

ROCK STRENGTH

Rock strength is described using AS1726 and ISRM – Commission on Standardisation of Laboratory and Field Tests, "Suggested method of determining the Uniaxial Compressive Strength of Rock materials and the Point Load Index", as follows:

Term	Symbol	Point Load Index Is ₍₅₀₎ (MPa)
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	Μ	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	EH	>10

ROCK MATERIAL WEATHERING

Rock weathering is described using the following abbreviation and definitions used in AS1726:

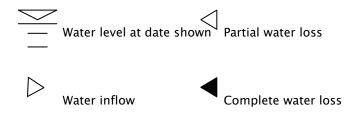
Abbreviation	Term	
RS	Residual soil	
XW	Extremely weathered	
DW	Distinctly weathered	
HW	Highly weathered	
MW	Moderately weathered	
SW	Slightly weathered	
FR	Fresh	

DEFECT SPACING/BEDDING THICKNESS

Measured at right angles to defects of same set or bedding.

Term	Defect Spacing	Bedding	
Extremely closely spaced	<6 mm	Thinly Laminated	
	6 to 20 mm	Laminated	
Very closely spaced	20 to 60 mm	Very Thin	
Closely spaced	0.06 to 0.2 m	Thin	
Moderately widely spaced	0.2 to 0.6 m	Medium	
Widely spaced	0.6 to 2 m	Thick	
Very widely spaced	>2 m	Very Thick	

DEFECT DESCRIPTION

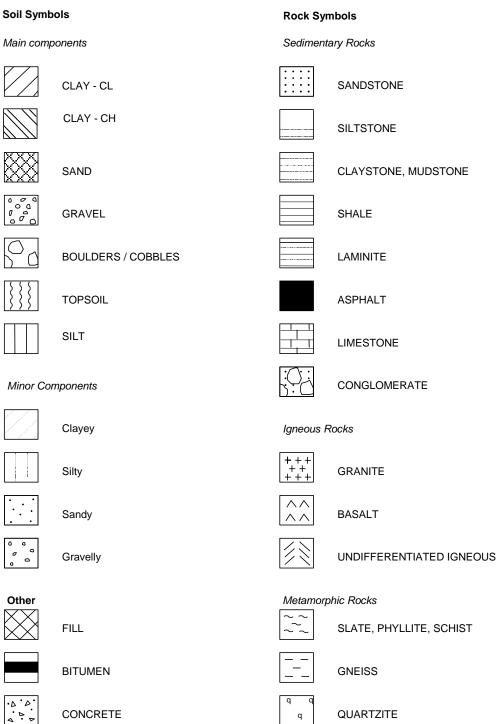

Туре:	Description	
В	Bedding	
F	Fault	
С	Cleavage	
J	Joint	
S	Shear Zone	
D	Drill break	
Planarity/Roughness		

Pla	nar	ity/	'Ro	ug	hn	ess	
-----	-----	------	-----	----	----	-----	--

Class	Description
I	rough or irregular, stepped
II	smooth, stepped
111	slickensided, stepped
IV	rough or irregular, undulating
V	smooth, undulating
VI	slickensided, undulating
VII	rough or irregular, planar
VIII	smooth, planar
IX	slickensided, planar

The inclination if defects are measured from perpendicular to the core axis.

WATER


Groundwater not observed: The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

Groundwater not encountered: The borehole/test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/test pit been left open for a longer period.

Graphic Symbols for Soils and Rocks

Typical symbols for soils and rocks are as follows. Combinations of these symbols may be used to indicated mixed materials such as clayey sand.

Engineering Classification of Shales and Sandstones in the Sydney Region – A Summary Guide

The Sydney Rock Class classification system is based on rock strength, defect spacing and allowable seams as set out below. All three factors must be satisfied.

CLASSIFICATION FOR SANDSTONE

Class	Uniaxial Compressive Strength (MPa)	Defect Spacing (mm)	Allowable Seams (%)
I	>24	>600	<1.5
Ш	>12	>600	<3
Ш	>7	>200	<5
IV	>2	>60	<10
V	>1	N.A.	N.A.

CLASSIFICATION FOR SHALE

Class	Uniaxial Compressive Strength (MPa)	Defect Spacing (mm)	Allowable Seams (%)	
I	>16	>600	<2	
Ш	>7	>200	<4	
III	>2	>60	<8	
IV	>1	>20	<25	
V	>1	N.A.	N.A.	

UNIAXIAL COMPRESSIVE STRENGTH (UCS)

For expedience in field/construction situations the uniaxial (unconfined) compressive strength of the rock is often inferred, or assessed using the point load strength index (Is_{50}) test (AS 4133.4.1 – 1993). For Sydney Basin sedimentary rocks the uniaxial compressive strength is typically about 20 x (Is_{50}) but the multiplier may range from about 10 to 30 depending on the rock type and characteristics. In the absence of UCS tests, the assigned Sydney Rock Class classification may therefore include rock strengths outside the nominated UCS range.

DEFECT SPACING

The terms relate to spacing of natural fractures in NMLC, NQ and HQ diamond drill cores and have the following definitions:

Defect Spacing (mm)	Terms Used to Describe Defect Spacing ¹	
>2000	Very widely spaced	
600 - 2000	Widely spaced	
200 - 600	Moderately spaced	
60 - 200	Closely spaced	
20 - 60	Very closely spaced	
<20	Extremely closely spaced	

¹After ISO/CD14689 and ISRM.

ALLOWABLE SEAMS

Seams include clay, fragmented, highly weathered or similar zones, usually sub-parallel to the loaded surface. The limits suggested in the tables relate to a defined zone of influence. For pad footings, the zone of influence is defined as 1.5 times the least footing dimension. For socketed footings, the zone includes the length of the socket plus a further depth equal to the width of the footing. For tunnel or excavation assessment purposes the defects are assessed over a length of core of similar characteristics.

Source: Based on Pells et al (1978), as revised by Pells et al (1998).

Pells, P.J.N, Mostyn, G. and Walker, B.F. - Foundations on Sandstone and Shale in the Sydney Region. Australian Geomechanics Journal, No 33 Part 3, December 1998.

Summary of Soil Logging Procedures

Coarse Material: grain size - colour - particle shape - secondary components - minor constituents - moisture condition - relative density - origin - additional observations. Fine Material: plasticity - colour - secondary components - minor constituents - moisture w.r.t. plasticity - consistency - origin - additional observations.

Fine - 0.21 to 0.075mm

	Guide to the Description, Identification and Classification of Soils									
	Major Divisions		SYMBOL	. Typical Names						
> 2	:00mm	BOI	JLDERS							
60 to	200mm	CC	BBLES							
	s mu	WEL	50% action m	GW	Well-graded gr	ravels, gravel-sand mixtures, little or	no fines.			
Ð	s les .075r	GRAVEL	than 50 rse fracti 2.36mm	GP	Poorly graded	gravels and gravel-sand mixtures, lit	tle or no fines, un	iform gravels.		
N	dry mass less er that 0.075m	elly Is		GM	Silty gravels, g	ravel-sand-silt mixtures.				
LS LS	/ dry ter tl	Gravelly Soils	More of coan	GC	Clayey gravels	, gravel-sand-clay mixtures				
COARSE GRAINED SOIL S	More than 65% by dry mass less than 63mm is greater that 0.075mm	SO	50% action m	SW	Well-graded sa	ands, gravelly sands, little or no fines	S.			
AR:	an 6 6 m is	SANDS	More than 50% of coarse fraction < 2.36mm	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands.			ands.		
8	re th 63m	ls d	More than f coarse fr < 2.36m	SM	Silty sands, sar	nd-silt mixtures.				
	Mc than	Mc than	Sandy Soils	of CC	SC	Clayey sands,	sand-clay mixtures.			
	s.		v it	ML	L Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts			nds or clayey silts		
	y dry mm		uid Limit < 50%	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.					
FINE GRAINED SOILS	5% b an 6().076	5% b an 6().076	More than 35% by dry nass less than 60mm is less than 0.076mm	Liquid Limit < 50%		OL	Organic silts a	Drganic silts and organic silty clays of low plasticity.		
SOIL	าลก 3 ss th han (ŧ.,	MH	Inorganic silts,	micaceous or diatomaceous fine sar	ndy or silty soils,	elastic silts.		
Z Z	ore thes so lead		Liquid Limit > 50%	CH	Inorganic clays	organic clays of high plasticity, fat clays.				
ш	a Ma		n ^	ОН	Organic clays	of medium to high plasticity, organic	silts.			
HIGH	HIGHLY ORGANIC SOILS F		Pt	Peat and other	highly organic soils.					
	40 'A-Line'				Gra	in sizes				
				сн		Gravel		Sand		
	0 20 Plastic Index %	c		î.		Coarse - 63 to 19mm	Coarse -	2.36 to 0.6mm		
	10 Lastic			or M		Medium - 19 to 6.7 mm	Medium -	0.6 to 0.21mm		

GEOL	.OGICAL	ORIGIN:-

Fill - artificial soils / deposits

20 30 40 50 60 70

Alluvial - soils deposited by the action of water Aeolian - soils deposited by the action of wind

Field Identification of Fine Grained Soils - Silt or Clay?

ML

Liquid Limit (%)

Dry Strength - Allow the soil to dry completely and then test its strength by breaking and crumbling between the fingers.

High dry strength - Clays; Very slight dry strength - Silts.

Toughness Test - the soil is rolled by hand into a thread about 3mm in diameter. The thread is then folded and re-rolled repeatedly until it has dried sufficiently to break into lumps. In this condition inorganic clays are fairly stiff and tough while inorganic silts produce a weak and often soft thread which may be difficult to form and readily breaks and crumbles.

Fine - 6.7 to 2.36mm

Topsoil - soils supporting plant life containing significant organic content

Residual - soils derived from insitu weathering of parent rock.

Colluvial - transported debris usually unsorted, loose and deposited

Dilatancy Test - Add sufficient water to the soil, held in the palm of the hand, to make it soft but not sticky. Shake horizontally, striking vigorously against the other hand several times. Dilatancy is indicated by the appearance of a shiny film on the surface of the soil. If the soil is then squeezed or pressed with the fingers, the surface becomes dull as the soil stiffens and eventually crumbles. These reactions are pronounced only for predominantly silt size material. Plastic clays give no reaction.

	Descriptive Terms for Material Portions						
CC	DARSE GRAINED SOILS		FINE GRAINED SOILS				
% Fines Term/Modifier		% Coarse	Term/Modifier				
≤ 5 Omit, or use "trace"		≤ 15	Omit, or use "trace"				
> 5, \leq 12 "with clay/silt" as applicable		> 15, ≤ 30	"with sand/gravel" as applicable				
> 12 Prefix soil as "silty/clayey"		> 30	Prefix as "sandy/gravelly"				

	Moisture Condition					
for non-cohe	sive soils:					
Dry -	runs freely through fingers.					
Moist-	does not run freely but no free water visible on soil surface.					
Wet -	free water visible on soil surface.					
for cohesive a	soils:					
MC> PL	> PL Moisture content estimated to be greater than the plastic limit.					
MC~PL	MC ~ PL Moisture content estimated to be approximately equal to the plastic limit.					
	The soil can be moulded					
MC< PL	Moisture content estimated to be less than the plastic limit. The soil is hard					
	and friable, or powdery.					
The plastic limit (I	PL) is defined as the moisture content (percentage) at which the soil crumbles when rolled into threads of 3mm dia.					
Consistency - For Clays & Silts						

	Consistency - For Clays & Silts					
Description UCS _(kPa) Field guide to consistency		Field guide to consistency				
	Very soft	< 25	Exudes between the fingers when squeezed in hand			
	Soft	25 - 50	Can be moulded by light finger pressure			
	Firm	50 - 100	Can be moulded by strong finger pressure			
	Stiff	100 - 200	Cannot be moulded by fingers. Can be indented by thumb.			
	Very stiff	200 - 400	00 Can be indented by thumb nail			
	Hard	> 400	> 400 Can be indented with difficulty by thumb nail			
	Friable - Crumbles or powders when scraped by thumbnail					

Relative Density for Gravels and Sands			
Description	SPT "N" Value	Density Index (ID) Range %	
Very loose	0 - 4	< 15	
Loose	4 - 10	15 - 35	
Medium dense	10 - 30	35 - 65	
Dense	30 - 50	65 - 85	
Very dense	> 50	> 85	

Summary of Rock Logging Procedures

Description order: constituents - rock name - grain size - colour - weathering - strength - minor constituents - additional observations.

· minor constituents - moisture w.r.t. plasticity - consistency - origin - additional observations.

	Definition - Sedimentary Rock
Conglomerate	more than 50% of the rock consists of gravel (>2mm) sized fragments
Sandstone	more than 50% of the rock consists of sand (0.06 to 2mm) sized grains
Siltstone	more than 50% of the rock consists of silt sized granular particles and the rock is not laminated
Claystone	more than 50% of the rock consists of clay or mica material and the rock is not laminated
Shale	more than 50% of the rock consists of clay or silt sized particles and the rock is laminated

		Weathering
Residual	RS	Soil developed on extremely weathered rock; the mass structure and
Soil		substance fabric are no longer evident; there is a change in volume
		but the soil has not significantly transported.
Extremely	EW	Rock is weathered to such an extent that it has 'soil' properties; ie. it either disintegrates or
Weathered		can be remoulded, in water.
Distinctly	DW	Highly Weathered (HW) - Rock is wholly discoloured and rock strength is significantly
Weathered		changed by weathering. Some primary minerals have weathered to clay minerals Moderately Weathered (MW) - The whole of the rock is discoloured, usually by iron staining and bleaching. Shows little or no change in rock strength.
Slightly	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Weathered		
Fresh	FR	Rock shows no sign of decomposition or staining.

	Stra	tification		
thinly laminated	<6mm	medium bedded	0.2 - 0.6m	
laminated	6 - 20mm	thickly bedded	0.6 - 2m	
very thinly bedded	20 - 60mm	very thickly bedded	>2m	
thinly bedded	60mm - 0.2m			

			Discontinuities		
order of de	escription: de	epth - type - orientati	on - spacing - roughness / pla	narity - thick	ness - coating
	Туре	Class	Roughness/Planarity	Class	Roughness/Planarity
В	Bedding	I	rough or irregular, stepped	VI	slickensided, undulating
F	Fault	II	smooth, stepped	VII	rough or irregular, planar
С	Cleavage	III	slickensided, stepped	VIII	smooth, planar
J	Joint	IV	rough or irregular, undulating	IX	slickensided, planar
S	Shear Zone	V	smooth, undulating		
D	Drill break				

			Rock Strength
Term		IS (50)	Field Guide
Very low	VL	0.03	Material crumbles under firm blows with sharp end of pick; can be peeled with knive. Pieces up to 30mm thick can be broken by finger pressure.
Low	L	0.3	A piece of core 150 mm long x 50 mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium	М	1	A piece of core 150 mm long x 50 mm dia. can be broken by hand with considerable difficulty. Readily scored with knife.
High	Н	3	A piece of core 150 mm long x 50 mm dia. core cannot be broken by unaided hands, can be slightly scratched or scored with knife.
Very High	VH	10	A piece of core 150 mm long x 50 mm dia. May be broken readily with hand held hammer. Cannot be scratched with pen knife.
Extremely High * - rock strength de	EH	-	A piece of core 150 mm long x 50 mm dia. Is difficult to break with hand held hammer. Rings when struck with a hammer.
-	-		Degree of fracturing
fragmented			e is comprised primarily of fragments of length less than 20mm, and of width less than the core diameter
highly		Core ler	ngths are generally less than 20mm - 40mm
fractured		with occ	asional fragments.
fractured			ngths are mainly 30mm - 100mm with occasional shorter ger lengths
slightly		Core ler	ngths are generally 300mm - 1000mm with occasional longer sections
fractured		and sho	rter sections of 100mm 300mm.

unbroken The core does not contain any fracture. # - spacing of all types of natural fractures, but not artificial breaks, in cored bores.

The fracture spacing is shown where applicable and the Rock Quality Designation isgiven by:RQD (%) = sum of unbroken core pieces 100 mm or longer

MACQUARIE	Client: Cabonne Council			0	20	40	60	80
	Project: Canomodine Bridge				Metres	- Scale	1:1,200	
GEOŢECH	Location: Canowindra, NSW				I to Horizonta			
3 Watt Drive, Bathurst NSW 2795 P: 02 6332 2011 F: 02 6334 4213 E: macgeo@macgeo.com.au	Drawn: CG	Checked: JB	Date: 30/4/2023	Co-ord	linate Referer	ice System	- EPSG: 432	26 WGS: 84

Legend Testing Locations Google Roads Overlay

NSW Six Map

JOB NO

B21781

Macquarie Geotechnical Ltd Geotechnical Investigation Locality Map

Drawing Number: B21781 - REV0

Appendix C – Borehole Logs

MACQUARIE
GEOŢECH

LOCA: BH01 PGID: BH01_001 PUB: 23050114

Borehole No.

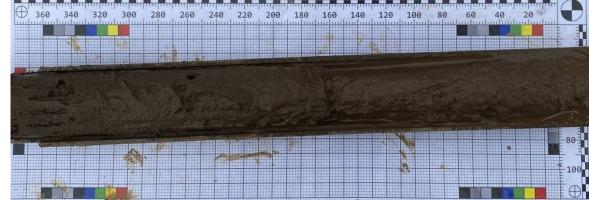
BH01

Page 1 of 6

P H	Client: Projec Iole L Iole F	t Na .oca	tion:	Cano	oma oma	dine dine	Creek Lane	-		nomadine Lane, Canowindra MGA94 Zone 55	Commenced Completed: Logged By: Checked By:	-		5/04/2 C	2023 2023	
	Drill M Iole D			I Mounting:	: 1	Hanjii	n DB8			Inclination: -90° Bearing:	RL Surface: Datum:		55.00 HD) m	Operat	tor: TH
				ing Informa	atio	on				Soil Descri						Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, I Plasticity, Sensitivity, Add	Bedding, tional	Moisture Condition	Consistency Relative Density	F Pene 8 8	Pocket etrometer UCS (kPa)	Structure and Additional Observation
				1 D 0.50-1.00 m 2 D 1.00-1.50 m		1 354.0			SP SP	FILL Gravelly SAND: fine to coarse gr orange, brown; gravel sub-rounded to fine to coarse-grained. FILL Clayey SAND gravel: fine to coa orange, brown; clay low plasticity; gra to sub-angular, fine to coarse-grained	sub-angular, rse grained, dark /el sub-rounded	D	L			FILL
				1 SPT 1.50 m 1, 2, 4 N=6 PP 1.50 m =10 - 30 kPa 3 D 2.00-2.50 m		1 353.0	2		СІ	Sandy Silty CLAY gravel: medium pla brown; sand fine to coarse-grained; g sub-rounded to sub-angular, fine to m	ravel	w <pl< td=""><td></td><td>×</td><td></td><td>ALLUVIAL SOIL</td></pl<>		×		ALLUVIAL SOIL
			\searrow	4 D 2.50-3.00 m 2 SPT 3.00 m 1, 1, 2 N=3 5 D 3.50-4.00 m		1 352.0			СН	Silty CLAY with sand trace gravel: hig brown; sand fine to coarse-grained; g	avel	w~PL	S			
				6 D 4.00-4.50 m 3 SPT 4.50 m 2, 2, 2 N=4		351.0	4			sub-rounded to sub-angular, fine to m	eulum-graineα.	w <ll< td=""><td>S</td><td></td><td></td><td></td></ll<>	S			
ARV	<u>M</u> S - Ai R - Ri VB- W	<u>lethc</u> uger ock F /asht	Screv Roller		No n ra	tration o resist anging refusa	tance to	\triangleright	<u>Wate</u> Level (Inflow Partial Compl	U(x) - Undisturbed Sa Date) D - Disturbed Sa SPT - Standard Per Loss pp - Pocket Penel ete Loss x=size in mm	Sample mple netration Test rometer (UCS kPa)	 	ure C D - [M - N W - N astic w <	Dry Moist Vet L <i>imit</i>		Consistency/Relative Dens VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense
		<u>иррс</u> - Са				_ in	ore rec dicates ore loss	materi	(hatchi ial)	ng <u>Classification Syn</u> and Soil Descrip AS1726:2017	tions		w = w >	コレ コレ LL		MD - Medium Dense D - Dense VD - Very Dense

MACQUARIE
GEOŢECH

LOCA: BH01 PGID: BH01_002 PUB: 23050114


Borehole No.

BH01

Page 2 of 6

En	ngin	ee	rin	g Log -	В	ore	hole)			Project No.:		B2	2178	31		
P F	Client: Projec Hole L Hole F	t Na .oca	tion:	Cano	ma ma	idine idine	Creek Lane	-		nomadine Lane, Canowindra MGA94 Zone 55	Commenced Completed: Logged By: Checked By						
C		ode	l and	d Mounting:						Inclination: -90° Bearing:	RL Surface: Datum:	3	55.00 HD)nera	tor: TH
				ing Informa	atic	on				Soil Descri							Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptior Fraction, Colour, Structure, Plasticity, Sensitivity, Adc	Bedding,	Moisture Condition	Consistency Relative Density	Per	UC (kP	ometer S	- Structure and Additional Observatior
				7 D 5.00-5.50 m 8 D 5.50-6.00 m 4 SPT 6.00 m		349.0			СН	Silty CLAY with sand trace gravel: hig brown; sand fine to coarse-grained; g sub-rounded to sub-angular, fine to n (continued)	gravel	w <ll< td=""><td></td><td></td><td></td><td>4 0</td><td>ALLUVIAL SOIL</td></ll<>				4 0	ALLUVIAL SOIL
				3, 11, 3 N=14 9 D 6.50-7.00 m		348.0			CL	Gravelly CLAY trace sand: low plastic grey; gravel sub-rounded to sub-angi coarse-grained; sand fine to coarse-g Continued on cored borehole sheet	ular, fine to	w <pl< td=""><td>. St</td><td>-</td><td></td><td></td><td>EXTREMELY WEATHERED MATERIAL 6.50: recovered as soil</td></pl<>	. St	-			EXTREMELY WEATHERED MATERIAL 6.50: recovered as soil
						 347.0	- - 8 -										
						 346.0	- - 9 - -										
R	AS - Ai RR - Ri VB- W	očk F	Scre Roller bore	wing 🖂	No	tration o resis anging refusa	tance to al	△ □ ▼ ■	(hatchi	U(x) - Undisturbed Date) D - Disturbed S: SPT - Standard Pe Loss p - Pocket Pene ete Loss x=size in mm	Sample ample enetration Test strometer (UCS kPa) <u>options</u>	<u>Pi</u>	<u>ure C</u> D - [M - N W - N astic N w < w < w = w > w =	Dry Moist Net Limi PL PL PL	t	<u> </u>	Consistency/Relative Dens VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

			LOCA: BH01 PGID: BH01_003 PUB: 23050114
MACQUARIE			Borehole No.
GEOŢECH			BH01 Page 3 of 6
Engineering Log - Borehole		Project No.:	B21781
Client:Cabonne CouncilProject Name:Canomadine Creek Bridge - CHole Location:Canomadine LaneHole Position:666461.0 m E 6290944.9 m N	Canomadine Lane, Canowindra I MGA94 Zone 55	Commenced: Completed: Logged By: Checked By:	04/04/2023 05/04/2023 R.C C.G
Drill Model and Mounting: Hanjin DB8 Hole Diameter:	Inclination: -90° Bearing:	RL Surface: Datum:	355.00 m AHD Operator: TH
PROJECT BLANTER BLANTER	LISOMA	s 12 2	L 4)23 4)6 30 50 40 20
	BH01 Depth Range: 1.50 - 1	95 m	
PROJECT BAN781	MACQUARIE GEOTECH	LOGGER	L
HOLE BHOI			4233
DEPTH FROM 3.50 DEPTH TO	3.45 SF BLOW (150mr		2 3 pp
	240 220 200 180 160 1	40 120 100 80	60 40 20

BH01 Depth Range: 3.00 - 3.45 m

<image/> <text><text><text><text><text><text></text></text></text></text></text></text>						LOCA: BH01 PGID: BH01_004 PUB: 23050114
<text></text>	MACQUAR	IE				
<text>regineering Log - Borehole</text>						BH01
Winter Caborne Courrell Weiget Name: Caborneadine Creek Bitige - Canomadine Lane, Canowinter Correntence: Byd/4/2023 Kelle Location: Geodefit on m E 6200944.9 m N MGA4 Zone 55 Checked By: C.G. Winded and Mounting: Hanjin DBB Inclination: -0° R! Suriae: 355.00 m Ide Diameter: Barring: Data APD Operator: TH						Page 4 of 6
	igineering L	og - Borehole		Project No.:	B21781	
	Project Name: lole Location:	Canomadine Creek Bridge - Canomadine Lane		Completed: Logged By:	05/04/2023 R.C	
<complex-block><complex-block></complex-block></complex-block>		unting: Hanjin DB8				perator: TH
BH01 Depth Range: 4.50 - 4.95 m FROJECT BLOGGER BH00 Depth BH00 Depth DEPTH BH00 BETH BETH BETH BETH 360 340 30 20 20 20 100	HOLE	BHOI U.SO DEPT	HU4.95 SP BLOW (150mm	DATE 4	4)2 32 V4	20
PROJECT GARGES MACQUARIE GEOTECH Logger HOLE TO BHON Logger Q <thq< th=""> Q Q</thq<>						
NUMBER School GEOTECH Logger HOLE BHON Date 414123 DEPTH GEOTECH Date 414123 DEPTH DEPTH GEOTECH Date 414123 DEPTH DEPTH GEOTECH Date 414123 DEPTH GEOTECH Date 414123 41423 DEPTH GEOTECH Date 414123 41423 DEPTH GEOTECH Date 414233 41423 DEPTH GEOTECH Date 41433 41433 41433 DEPTH GEOTECH BLOWS SPT 32 13 144 120 100 80, 60 40 20			BH01 Depth Range: 4.50 - 4	.95 m		
DEPTH FROM 6.000 DEPTH TO 6.005 BLOWS (150mm) 3 3 5 FT - 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20	HOLE	Ruhl			L 412	3
					3 14	
A REAL PROPERTY OF THE REAL PR	⊕ 350 	340 320 300 280 260	240 220 200 180 160 1	40 120 100 86		
	AP -	B. Burg				
	1 Com				and the second	· ·

BH01 Depth Range: 6.00 - 6.45 m

 \bigoplus

*

4

2 3

Ŋ.,

10

MACQUARIE GEOŢECH												LOCA: BH01 PGID: BH01 005 PUB: 23050114 Cored Borehole No. BH01					
-	nai	inc	<u>.</u>	rin	al	00	Cor	od Borobolo					C	Proi	Page 5 of 7 oject No.: B21781		
Hole Location: Canomad						Cabo Cano Cano	nne C madir madir	Council line Creek Bridge - Canomadine Lane, Canowindra (NSW, Aus					(alia) (L	Cor Cor Log Che	nmenced: npleted: iged By: ecked By:	menced: 04/04/2023 oleted: 05/04/2023 ed By: R.C	
		rill Model and Mounting: arrel Type and Length:				-	Ha	njin DB8 Inclination: Bearing:	-90	-90° RL Surfac Datum:			ace: 355.0 AHD	00	m Operator: TH		
	Drilling Information					tion		Rock Substance							Rock Mass Defects		
Meriloa	Support	Water	TCR (%)	RQD (%)	RL (m)	Depth (m)	Graphic Log	Material Description rock type: grain characteristics, colour, structure, minor components	Weathering		Strength Is(50) O - Axial O - Diametral		Defect Spacing (mm) © 000000000000000000000000000000000000	F	Defect Description thickness, type, inclination, planarity, roughness, coating/infilling Particular General		
			100 100	0 06	347.0 348.0 349.0 349.0			Continued from non-cored borehole sheet NO CORE 0.43m (7.00-7.43) MUDSTONE WITH CALCITE: dark brown, grey, massive, occasional irregular calcite veins throughout.	xw					-	JT, 15°, IR, RF JT, 80°, IR, RF JT, 20°, IR, RF		
					1 346.0	9-		MUDSTONE WITH CALCITE: dark grey, massive, frequent irregular calcite veins throughout, up to 5mm thick, possibly carbonaceous.	sw				1 🕋	Ŀ	JT, 30°, IR, RF JT, 80°, IR, RF JT, 25°, IR, RF		
			100	98		-									JT, 30°, IR, RF JT, 75°, IR, RF		
		Method AS - Auger Screwing WB- Washbore HQ3 HQ3 Core Barrel NQ3 NQ3 Core Barrel						Water Graphic Log ∑ Level (Date) ☐ Inflow ☐ Core rec ☐ indicates ☐ Core los ☐ Core los	overe mate	ed	I (hatching F ial)	SN DN XN	Weatherin R - Fresh V - Slightly Wea V - Distinctly W V - Extremely V S - Residual Sc	athe eat Vea	ered hered athered	Strem ndirect tensil VL - Very L - Low M - Medi H - High VH - Very EH - Extre	e strength) Low um High

Ξr	G	ine	D	Ţ.	AR Cl	1 og -		ed Borehole							Cored Bor BH Page 6 roject No.: B2	01 5 of 7 1781
F F	lole	nt: ect e Lo e Pc	cat	ion:		Cano Cano	madir madir	council ne Creek Bridge - Canomadine Lane, Car ne Lane n E 6290944.9 m N MGA94 Zone 55	nowii	nd	ra (NSW, Aust	tralia	a)	Co		
					d Mou Id Lei	unting: ngth:	Ha	njin DB8 Inclination: Bearing:	-9	0°	° RL Sui Datum			55.00 HD	0 m Operator: TH	
	L	Drill	ing	Infe	orma	tion		Rock Substance							Rock Mass Defects	S
INIEILIOU	Support	Water	TCR (%)	RQD (%)	RL (m)	Depth (m)	Graphic Log	Material Description rock type: grain characteristics, colour, structure, minor components	Weathering	0	Strength Is(50) O - Axial O - Diametral	S	Defect pacing (mm)	Visual	Defect Des thickness, type, incli roughness, coa Particular	nation, planarity,
						-		MUDSTONE WITH CALCITE: dark grey, massive, frequent irregular calcite veins throughout, up to 5mm thick, possibly carbonaceous.(<i>continued</i>)						1 1 1 1 1 1 1 1 1 1 1 1 1]- JT, 75°, IR, RF]- JT, 50°, IR, RF	
			100	98	 344.0	- 11			sv	v					– JT, 75°, IR, RF	
					1 343.0	- 12 — 12.16m 12.20m		NO CORE 0.04m (12.16-12.20)						ALL AR	∃- JT, 45°, IR, RF	
			100	100		-]- JT, 35°, IR, RF	
					342.0	13 - 13.34m		Hole Terminated at 13.34 m							⊐- JT, 35°, IR, RF	
					 341.0		-	Target depth						ngg genesis North Dirk in She		
						-	-									
		WB- HQ3	- Au - W	ashb Q3 C	Screw	arrel		Water Graphic Lo ∠ Level (Date) ∟ Core re indicate ∠ Oroplete Loss ∠ Partial Loss ∠ Complete Loss Support T - Timbering T	ecove es ma	rec	d (hatching F rial) E	SW - SW - SW -	<u>Weather</u> Fresh Slightly V Distinctly Extreme Residua	Weat y We	(indirect f thered VL - athered L - eathered M - I H - VH -	<u>Strength</u> tensile strength) Very Low Low Medium High Very High Extremely High

					LOCA: BH01 PGID: BH01_007 PUB: 23050114
MACQUA	RIE				Cored Borehole No.
GEOŢEC	H				BH01
					Page 7 of 7
ngineering	Log - Cored Borehole)		Project No .:	B21781
Client: Project Name: Hole Location: Hole Position:	Cabonne Council Canomadine Creek Bridge - C Canomadine Lane 666461.0 m E 6290944.9 m N	Canomadine Lane, Canowindra	(NSW, Australia)	Commenced Completed: Logged By: Checked By:	05/04/2023 R.C
Drill Model and M Barrel Type and L	ounting: Hanjin DB8	Inclination: -90° Bearing:	RL Surface: Datum:	355.00 m	rator: TH
PROJECT NAME HOLE ID	CANODAMINE LAI BHOI		PROJECT NUMBER CLIENT	BZ178	iouncile
DEPTH FROM	L. D DEPTH 11. 00 BOX 0.1 0.2 0.3		RIE	11100	0.9 1.0
7 N	O CORE NO	(ORE		2.5	Neo.
8			Le el	All and	
<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>					
10					A BOARD
		PointID : BH01 Depth Range: 7	.00 - 11.00 m		
PROJECT	CANODAMINE LA	NE BRIDGE GI	PROJECT	B2178	COUNCILL
ID DEPTH FROM DEPTH (m)	BHD 1 1.00 DEPTH 13.34 BC 0.1 0.2 0.3			11.10.0	
				2.1	
12	19.20 No core				
13		CANO DAMINE BRIDGE GI os 104/2023 END OF CORING AT 13.34			
A REAL PROPERTY AND A REAL			· · · · · · · · · · · · · · · · · · ·		

MACQUARIE
GEOŢECH

LOCA: BH02 PGID: BH02_001 PUB: 23050114

Borehole No.

BH02

Page 1 of 6

Er	ngin	iee	rin	g Log -	B	ore	hole)			Project No.:		B2	217	81		
F	Client: Projec Hole L	t Na ₋oca	tion:	Cano	ma ma	dine dine	Creek Lane	-		nomadine Lane, Canowindra	Commenced Completed: Logged By:		03 R.	3/04 .C	l/20 l/20		
ŀ	Hole F	Posit	ion:	6664	59.9	9 m E	6290	957.0) m N I	IGA94 Zone 55	Checked By		C.	G			
	Drill M Hole [d Mounting: ::	ł	Hanjii	n DB8			Inclination: -90° Bearing:	RL Surface: Datum:		55.00 HD) m		Operat	tor: TH
			Drill	ing Informa	atio	on				Soil Descrip	otion						Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, E Plasticity, Sensitivity, Addi		Moisture Condition	Consistency Relative Density	Pe	UC (kF	ometer CS	Structure and Additional Observation
				1 D 0.10-0.50 m 1 2 D 0.50-1.50 m SPT 0.50 m 2, 2, 3 N=5 PP 0.50 m		0.	-		CL CI	TOPSOIL Gravelly Sandy CLAY: low p brown; sand fine to coarse-grained; gr coarse-grained, sub-rounded to sub-a Sandy Silty CLAY with gravel: medium orange, brown; sand fine to coarse-gra to medium-grained, sub-rounded to su	avel fine to ngular. I plasticity, dark ained; gravel fine	D w <pl< td=""><td>S . F</td><td>×</td><td></td><td></td><td>TOPSOIL ALLUVIAL SOIL</td></pl<>	S . F	×			TOPSOIL ALLUVIAL SOIL
AD/T			×	= 30 - 50 kPa 2 SPT 1.50 m 1, 1, 2, N=3 PP 1.50 m = 10 - 30 kPa 3 D 2.00-2.50 m		353.0 354.0 354.0	1 2 -		СН	Silty CLAY with sand: high plasticity, bi sand fine-grained. 2.00-2.50: Clay medium plasticity	rown, black;	w~PL	S	×			
						352.0	- 			Continued on cored borehole sheet							
						351.0	- - 4 -										
F	AS - A RR - R VB- W ■	ločk F	Scre Roller bore	wina 🖂	No 1 ra	tration o resist anging refusa	tance to al	△ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	I (hatchi	Date) U(x) - Undisturbed S Date) D - Disturbed S Loss pp - Pocket Penet ete Loss x=size in mm	Sample nple etration Test rometer (UCS kPa) <u>nbols</u>	<u>Pi</u>	<u>ure C</u> D - [M - N W - N w = w = w = w =	Dry Mois Wet Lim PL PL PL	st	<u> </u>	Consistency/Relative Densi VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

							LOCA: BH02 PGID: BH02 002 PUB: 23050114	2
	RIE					Γ	Borehole No.	
GEOŢECI	1						BH02	
gineering L	.og - Borehole				Project No.:	L B2178	Page 2 of 6	
ent:	Cabonne Council				Commenced:	03/04/		
oject Name: le Location:	Canomadine Creek	Bridge - Canom	nadine Lane, Car	nowindra	Completed: Logged By:	03/04/ R.C	2023	
le Position:	666459.9 m E 62909	57.0 m N MGA	.94 Zone 55		Checked By:	C.G		
ill Model and Mo le Diameter:	unting: Hanjin DB8		Inclination: Bearing:	-90°	RL Surface: Datum:	355.00 m AHD	Operator: TH	
·	-	b.	MACOI					
PROJECT	82138		GEOT		LOGGER	L	- A	
HOLE	Qual	1.1.1				4	222	
ID	DUDT				2	TI		
DEPTH	00.10		.95	SPT BLOWS (150mm)	12 ² 2	33	5 300	
			աստարություն	•			Source	
() 360	340 320 300 280	260 240	220 200 180	160 140	120 100 8	30 60	40 20	
	- Alexant	ST ME				2.084	CAP IN GRANT	
	12922		L. Con	6 6 5 5 5				
			•				80	
		•	•				-100	
		BH	102 Depth Range	e: 0.10 - 0.95	m			
PROJECT	82178 8402		MACQU GEOTE	ARIE		L	1 for	
			GEOTE	СП	1		1200	
HOLE	RHOT	Asel	•		DATE 5	41	× D	
DEPTH	150	DEPTH	94	SPT BLOWS	2	3	2 10-6	
FROM	1.20	то	. 43	(150mm)		x	S BOH	
⊕ 360	340 - 320 300 280	260 240	220 200 180	160 140	120 100 8	0 60 4	40 20	
		and the second					20	
	T'' E. BRARDS	WE WAY	Castle Son	C. S. C. S.	S. E.A.			
	CHANNA .	(SUM		E. C.	ALL AND			
					a partie		E 80-	

BH02 Depth Range: 1.50 - 1.95 m

				F	LOCA: BH02 PGID: BH02_003 PUB: 23050114
MACQUAR					Borehole No.
GEOŢEC	н				BH02
				L	Page 3 of 6
ngineering L	.og - Borehole		Project No.:	B217	81
Client:	Cabonne Council		Commenced:	03/04	/2023
Project Name:	Canomadine Creek Bridge - Ca	anomadine Lane, Canowindra	Completed:		/2023
Hole Location: Hole Position:	Canomadine Lane 666459.9 m E 6290957.0 m N I	MCA04 Zana EE	Logged By:	R.C C.G	
			Checked By:		
Jrill Model and Mo Hole Diameter:	unting: Hanjin DB8	Inclination: -90° Bearing:	RL Surface: Datum:	355.00 m AHD	Operator: TH
HOLE ID DEPTH FROM	8401 3.00 DEPTH TO	3.15 SP BLOW: (150mm		3	N pp
360	340 320 300 280 260 2	40 · 220 200 180 160 14	10 120 100 9	0 60	
					20- 40- 60-
					-80

BH02 Depth Range: 3.00 - 3.15 m

					g L		Со	red Borehole						Pr	LOCA: BH PGID: BH PUB: 230 Cored Boreho BH02 Page 4 of roject No.: B2178	²² 004 50114 le No.
F	lole	ect	cat	me: ion: on:		Cano Cano	madi madi	Council ine Creek Bridge - Canomadine Lane, C ine Lane m E 6290957.0 m N MGA94 Zone 55	Canow	/ind	lra (NSW, Aus	tralia)		Co Lo	ommenced: 03/04/2 ompleted: 03/04/2 ogged By: R.C necked By: C.G	
					d Mou nd Le	unting: ngth:	Ha	anjin DB8 Inclination Bearing:		-90	° RL Su Datum		35 AH) m Operator: TH	
	Ľ	Drill	ing	Infe	orma	tion		Rock Substanc	ce						Rock Mass Defects	
Method	Support	Water	TCR (%)	RQD (%)	RL (m)	Depth (m)	Graphic Log	Material Description rock type: grain characteristics, colour, structure, minor components		Weathering	Strength Is(50) ● - Axial ○ - Diametral	Defec Spacir (mm)	ig	Visual	Defect Descript thickness, type, inclinatic roughness, coating/ Particular	n, planarity,
					1 1 353.0 354.0											
			1003	90mm ≢₽₽	352.0	3.00m 3.15m 3.27m		Continued from non-cored borehole sheet NO CORE 0.15m (3.00-3.15) Gravelly CLAY with sand: grey, brown; grave fine to coarse-grained, sub-rounded to angula sand fine to coarse-grained; hard; w-PL.		RS				HE CORE		
			100	111	1 351.0	- - 4		LIMESTONE: dark brown, grey, massive, frequent irregular calcite veins throughout, possibly tuffaceous.	/	MW					- JT, 35°, IR, RF ⊷ JT, 15°, IR, RF ∽ JT, 25°, IR, RF	
			100	97		-			-	HW				and the	JT, 25°, IR, RF - FZ	
		WB- HQ3	- AL - W	ashb Q3 C	Screw	arrel		⊳ Inflow indic		ere	d (hatching F rial) E	<u>We</u> R - Fre: SW - Slig OW - Dist W - Extr SS - Res	htly V inctly emel	Veat Weat y We	(indirect tensi hered VL - Very athered L - Low eathered M - Med	le strength) / Low ium / High

LOCA: BH02

٨	M. G		C D	ĮU, ĮE	AR CH	IE I										LOCA: BHO PGID: BHO PUB: 2305 I Borehol BH02 age 5 of	2_005 0114 e No.
C P H	clie Proj Iole		Var cati	ne: on:		Cabo Cano Cano	onne C omadir omadir	red Borehole Council ne Creek Bridge - Canomadine Lane, Ca ne Lane n E 6290957.0 m N MGA94 Zone 55	nowin	ıdr	a (NSW, Aust	tralia)	C C L	Com Com	ect No.: menced: pleted: led By: cked By:	B21781 03/04/2 03/04/2 R.C C.G	023
					l Mou d Ler	inting: ngth:	: Ha	njin DB8 Inclination: Bearing:	-9	0°	RL Su Datum		355.0 AHD	00 m		тн	
	Ľ	Drilli	ng	Info	orma	tion		Rock Substance						ł	Rock Mass De	fects	
INELIOU	Support	Water	TCR (%)	RQD (%)	RL (m)	Depth (m)	Graphic Log	Material Description rock type: grain characteristics, colour, structure, minor components	Weathering	(ice)	Strength Is(50) ● - Axial O - Diametral	Defe Spac (mr	n) n	Pa	thickness, type	t Description, inclination , coating/i	n, planarity,
			100	67	1 349.0			LIMESTONE: dark brown, grey, massive, frequent irregular calcite veins throughout, possibly tuffaceous.(continued)	HW						T, 20°, IR, RF T, 20°, IR, RF		
					1 348.0	- 6.32m - - - 7 7.27m		NO CORE 0.95m (6.32-7.27)	HW	/			NO CORE NO ORE		Z		
			100	68	1 347.0			LIMESTONE: dark grey, massive, frequent irregular calcite veins throughout.	MV					 =_ J'	T, 15°, IR, RF T, 20°, IR, RF .12: gravelly clay		
					1 346.0	<u>8.27m</u> - - - 9		LIMESTONE: dark grey, massive, frequent irregular calcite veins throughout.	SW	,				() We approximate the set of t	T, 20°, IR, RF		
			100	100		-											
		WB- HQ3	Au Wa HG	ishb 3 Co	Screw	arrel		Water Graphic Loc ∠ Level (Date) ▷ Inflow ∠ Partial Loss ∠ Core id ∠ Core id	ecover es mat	ed	(hatching F al) E	R - Fr W - Sli W - Di W - Ex	/eatherin esh ightly Wea stinctly W tremely V esidual Sc	ather eath Veath	ed V ered L hered M H		e strength) Low um High

					AR CI g La		Cor	ed Borehole							Ρ	Co roject No.:	LOCA: BH PUB: 230 red Boreho BH02 Page 6 of B2178	²² 006 50114 le No.
F F	lole	nt: ect l e Lo e Po	cati	on:		Cano Cano	madir madir	ouncil e Creek Bridge - Canomadine e Lane n E 6290957.0 m N MGA94 Zo		wind	ra (NSW	/, Au	istralia	i)	C L	commenced: completed: ogged By: checked By:	03/04/2 03/04/2 R.C C.G	
					d Mou d Ler	inting: ngth:	: Ha	,	nclination: earing:	-90		RL S Datu	urface m:		355.0 AHD	0 m Operato	or: TH	
_	Ľ	Drill	ing	Info	orma	tion		Rock St	ubstance							Rock Mass	Defects	
Method	Support	Water	TCR (%)	RQD (%)	RL (m)	Depth (m)	Graphic Log	Material Description rock type: grain characteristics structure, minor compone		Weathering	Streng Is(50 ● - Ax ○ - Diam	í) ial	SI (Defect Dacing mm)	Visual	thickness, t	efect Descript type, inclinatio ness, coating/	n, planarity,
HQ3			100	100	343.0 344.0			LIMESTONE: dark grey, massive, fi irregular calcite veins throughout.(ca Hole Terminated at 12.32 m Target depth		SW						} JT, 75°, IR, RF		
					 342.0	- 13-	-											
					 341.0		-											
		WB- HQ3	Au Wa	ashb 23 C	Screw	arrel		<u>Water</u> ∠ Level (Date) ▷ Inflow ⊲ Partial Loss ◀ Complete Loss <u>Support</u> T - Timbering	Graphic Log/	vered	d (hatching		SW - DW - XW -	Fresh Slightly Disting	nely W	thered eathered /eathered	Strer (indirect tensi VL - Very L - Low M - Med H - High VH - Very EH - Extre	le strength) Low ium High

					LOCA: BH02 PGID: BH02_007 PUB: 23050114
MACQUA	RIE			Co	pred Borehole No.
GEOŢEC	H				BH02
					Page 7 of 8
ngineering	Log - Cored Borehole			Project No.:	B21781
Client: Project Name: Hole Location: Hole Position:	Cabonne Council Canomadine Creek Bridge - C Canomadine Lane 666459.9 m E 6290957.0 m N	anomadine Lane, Canowindra (MGA94 Zone 55	(NSW, Australia)	Commenced: Completed: Logged By: Checked By:	03/04/2023 03/04/2023 R.C C.G
Drill Model and M	ounting: Hanjin DB8	Inclination: -90°	RL Surface:	355.00 m	
Barrel Type and L	ength:	Bearing:	Datum:	AHD Operat	or: TH
HOLE ID DEPTH 3 DEPTH 3	CANODAMINE LAN HOZ .co depth J.co Box NO 0.1 0.2 0.3 	MACQUAR		B21781 CABONNE CO 04/04/23 LOG 0.7 0.8	0,
3 NO C	URE			4.52	
6	NO CASE)	PointID : BH02 Depth Range: 3	.00 - 7.00 m	CORE	- 23 Jan 1
PROJECT NAME HOLE ID EPTH FROM 2 CEPTH	CANODAMINF (A) HOZ .00 DEPTH (1.90 NO 0.1 0.2 0.3	MACQUAR		BQ1781 CABONNE CC 04/04/Q3 LOGG 2.2 2.2	Contraction of the second seco
7 NO 8) CORE				
10				10,1	

AACQUAF GE <mark>OŢEC</mark>						BH02
					Pa	age 8 of 8
igineering L	.og - Cored Borehole	•		Proje	ect No.:	B21781
Client: Project Name: Iole Location: Iole Position:	Cabonne Council Canomadine Creek Bridge - C Canomadine Lane 666459.9 m E 6290957.0 m N		ndra (NSW, Australia) Com Logo	imenced: ipleted: ged By: cked By:	03/04/2023 03/04/2023 R.C C.G
Drill Model and Mo Barrel Type and Le	o ,	Inclination: -9 Bearing:	00° RL Surface Datum:	: 355.00 n AHD	n Operator:	тн
	GANODAMINFELAN		CLIENT			
PROJECT NAME HOLE ID DEPTH TH M M	402	MACQU	CLIENT	CABON		NCILC FC 0.9

PointID : BH02 Depth Range: 11.00 - 12.32 m

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 320987

Client Details	
Client	Macquarie Geotech
Attention	Jasper Haines
Address	3 Watt Dr, Bathurst, NSW, 2795

Sample Details	
Your Reference	S23130-1 Canomadine Creek Bridge GI
Number of Samples	2 Soil
Date samples received	17/04/2023
Date completed instructions received	17/04/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	24/04/2023
Date of Issue	24/04/2023
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Diego Bigolin, Inorganics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 320987 Revision No: R00

Soil Aggressivity			
Our Reference		320987-1	320987-2
Your Reference	UNITS	S85291	S85294
Sample ID		OUT.HUT BH01 2.50-3.00m	BAD.HAM BH02 2.00-2.50m
Date Sampled		04/04/2023	04/04/2023
Type of sample		Soil	Soil
pH 1:5 soil:water	pH Units	7.9	8.0
Electrical Conductivity 1:5 soil:water	µS/cm	80	74
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	20	<10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	CONTROL:	Soil Agg	ressivity			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001		[NT]		[NT]	[NT]	99	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	104	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	109	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	100	[NT]

Result Definiti	Result Definitions				
NT	Not tested				
NA	Test not required				
INS	Insufficient sample for this test				
PQL	Practical Quantitation Limit				
<	Less than				
>	Greater than				
RPD	Relative Percent Difference				
LCS	Laboratory Control Sample				
NS	Not specified				
NEPM	National Environmental Protection Measure				
NR	Not Reported				

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

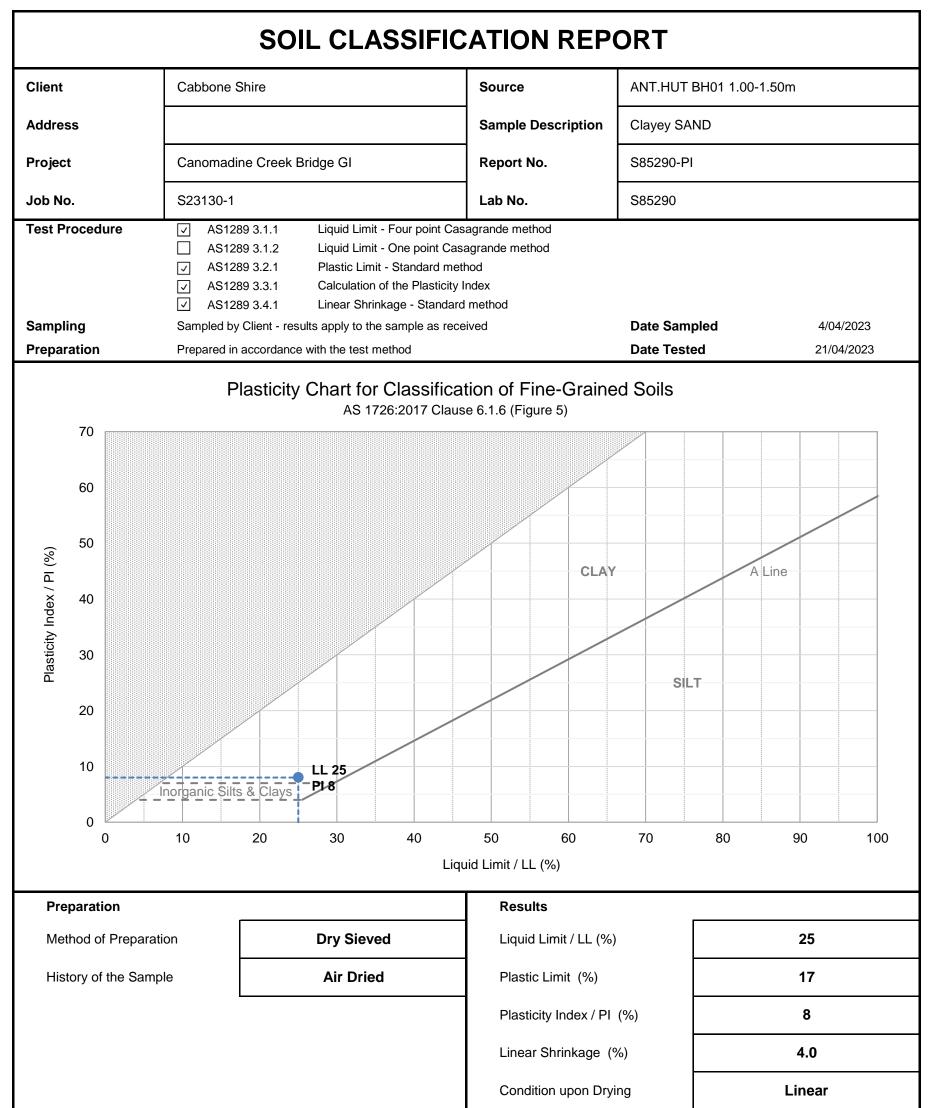
Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

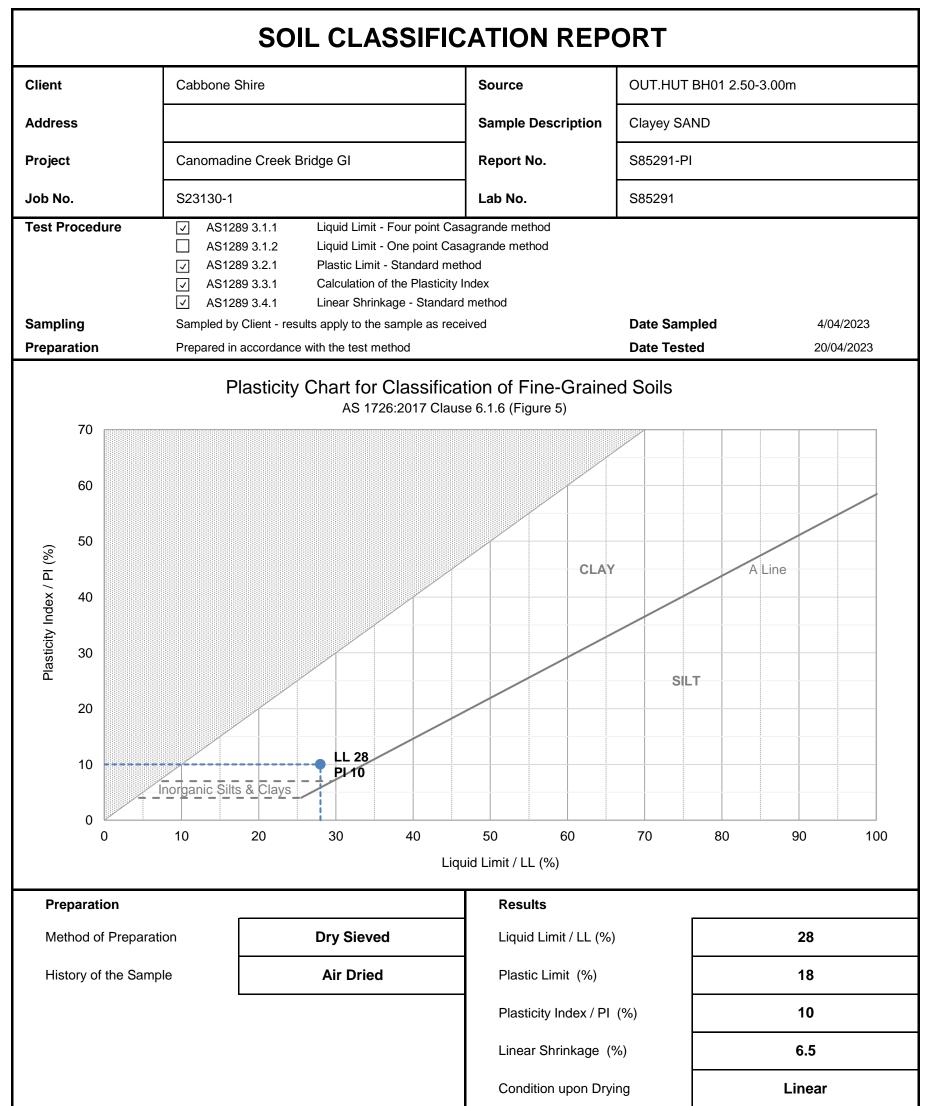
When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

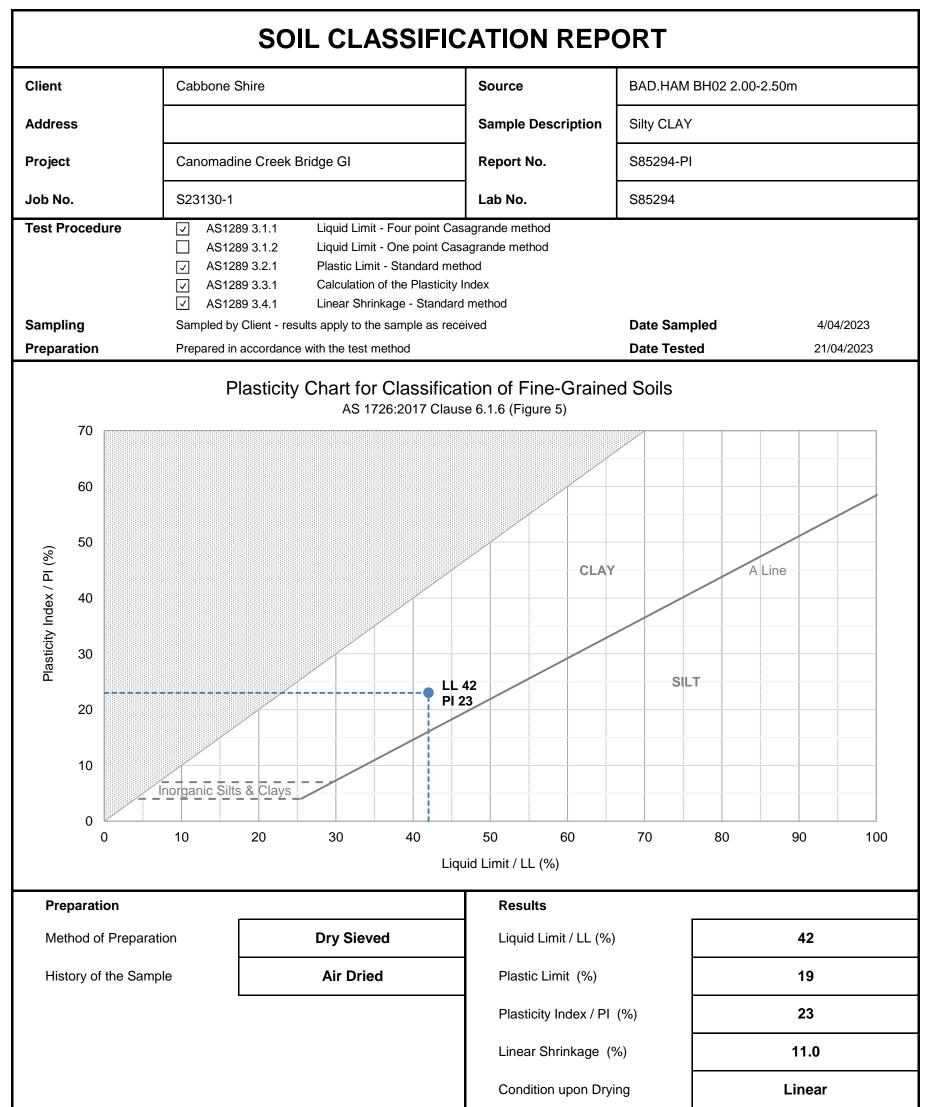

Measurement Uncertainty estimates are available for most tests upon request.

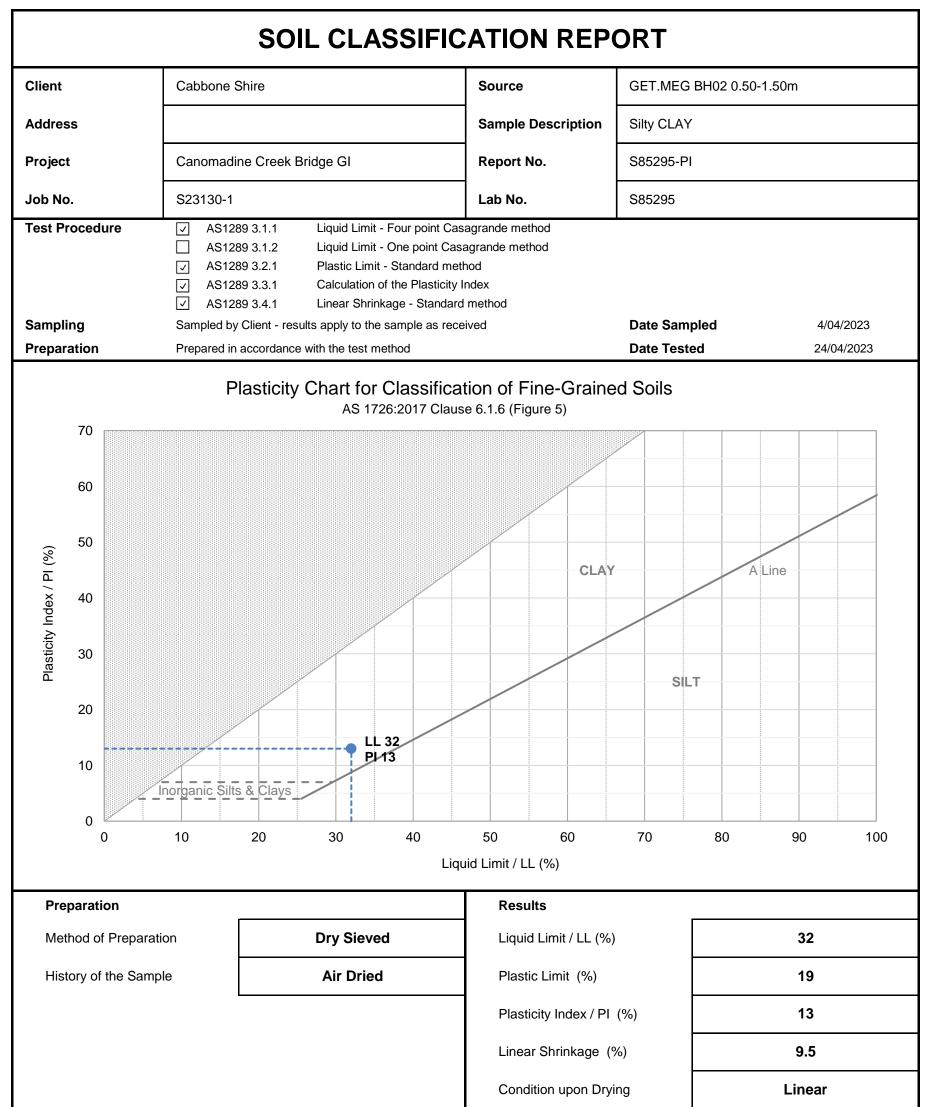
Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.


Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH/EC: Samples were out of the recommended holding time for this analysis.


Notes			
		Authorised Signatory:	
NATA	Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full. Results relate only to the samples tested.		26/04/2023
	NATA Accredited Laboratory Number: 14874	Jacob Lloyd	Date:
MACQUA GEOŢEC			Macquarie Geotechnical 14 Carter St Lidcombe NSW 2141


Notes			
	Accredited for compliance with ISO/IEC 17025 - Testing.	Authorised Signatory:	
NATA	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full. Results relate only to the samples tested.	IM	26/04/2023
•	NATA Accredited Laboratory Number: 14874	Jacob Lloyd	Date:
MACQUA GEOŢEC			Macquarie Geotechnical 14 Carter St Lidcombe NSW 2141

	Uniaxial Comp	ressive Strength	
Client	Cabbone Shire Council	Sample Source	BH01 8.67-8.87m
Address	PO Box 17, Molong, NSW 2886	Sample Description	Rock Core
Project	Canomadine Creek Bridge GI	Report #	S85292-UCS
Job #	S23130-1	Sample #	S85292
Test Procedure	AS 4133.4.2.2 Determination of uniaxial co		
Sampling	Sampled by Client - results apply to the sample as received	Date Sampled	4/04/2023
Storage History	Sealed	Storage Environment	Sealed at as received moisture condition
Sample Curing	-	Testing Machine	Matest 2000 kN Compression Machine
	Uniaxial Compressive Stre	ngth 23	MPa
Date Tested:	17/04/2023	Moisture Content:	0.5 %
Specimen Height:	165.8 mm	Duration of Test:	688 seconds
Average Specimen I	Diameter: 61.0 mm	Rate of Displacement:	< 0.1 mm/min
Failure Type:	Mixed mode	•	
Other Pertinent Observations:			
NATA The re this du docum	lited for compliance with ISO/IEC 17025 - Testing. Isults of the tests, calibrations and/or measurement ocument are traceable to Australian/national sta ent shall not be reproduced, except in full.		Authorised Signatory: Chris Lloyd 18/04/2023
MACQUA GEOŢEC			Macquarie Geotechnical 14 Carter St Lidcombe NSW 2141

	Uniaxial Compr	essive Strength	
Client	Cabbone Shire Council	Sample Source	BH02 11.24-11.44m
Address	PO Box 17, Molong, NSW 2886	Sample Description	Rock Core
Project	Canomadine Creek Bridge GI	Report #	S85293-UCS
Job #	S23130-1	Sample #	\$85293
Test Procedure	AS 4133.4.2.2 Determination of uniaxial co	n pmpressive strength-Rock sti	rength less than 50 MPa
Sampling	Sampled by Client - results apply to the sample as received	Date Sampled	4/04/2023
Storage History	Sealed	Storage Environment	Sealed at as received moisture condition
Sample Curing	-	Testing Machine	Matest 2000 kN Compression Machine
	Uniaxial Compressive Stre	ngth 6.5	МРа
Date Tested:	17/04/2023	Moisture Content:	1.5 %
Specimen Height:	162.5 mm	Duration of Test:	639 seconds
Average Specimen I	Diameter: 60.8 mm	Rate of Displacement:	< 0.1 mm/min
Failure Type:	Single shear plane		
Other Pertinent Observations:			
The re this di docum	lited for compliance with ISO/IEC 17025 - Testing. sults of the tests, calibrations and/or measurement ocument are traceable to Australian/national sta ent shall not be reproduced, except in full.		Authorised Signatory: Chris Lloyd 18/04/2023
MACQUA GEOŢEC			Macquarie Geotechnical 14 Carter St Lidcombe NSW 2141

Notes			
^	Accredited for compliance with ISO/IEC 17025 - Testing.	Authorised Signatory:	
NATA	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full. Results relate only to the samples tested.	ge	26/04/2023
	NATA Accredited Laboratory Number: 14874	Chris Lloyd	Date:
MACQUAI GEOŢEC			Macquarie Geotechnical 14 Carter St Lidcombe NSW 2141

Notes			
^	Accredited for compliance with ISO/IEC 17025 - Testing.	Authorised Signatory:	
NATA	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full. Results relate only to the samples tested.	ge	27/04/2023
•	NATA Accredited Laboratory Number: 14874	Chris Lloyd	Date:
GEOTECH		Macquarie Geotechnical 14 Carter St Lidcombe NSW 2141	